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A non-relativistic reduction of the Dirac equation in the 
free-particle basis 

J Potvini 
Dbpartement d e  Physique, UniversitC Laval, Quebec, Canada, G1K 7P4 

Received 20 October 1980 

Abstract. We use the non-relativistic limit of the integro-differential formulation of the 
Dirac equation in order to find an effective Schrodinger equation which, solved in the well 
known non-relativistic free-particle basis, gives approximately the same results (the prob- 
ability amplitudes) as the Dirac equation for non-relativistic states written in terms of the 
free-particle spinors. Effective Hamiltonians for the electromagnetic and pseudoscalar 
interactions are derived. Comparison with the results of the Foldy-Wouthuysen method for 
the electromagnetic case is also achieved. 

1. Introduction 

In the middle of the 70s, the so-called ‘pion-nucleon absorption operator ambiguity’ in 
pion production physics required the study of the non-relativistic reduction of the Dirac 
equation for the pseudoscalar interaction (for a complete bibliography, see Woloshyn 
1980). However, recent papers have shown that the dynamics involved in pion 
production physics makes these non-relativistic approximations not very appropriate 
and rather necessitates the direct solution of the Dirac equation (Hecking et a1 1978). In 
the context of the T-N interaction, the problem of the non-relativistic reduction of the 
Dirac equation seems presently academic. Nevertheless, we want to point out a very 
interesting question which may be useful for future work in non-relativistic quantum 
mechanics. 

The main purpose of this paper is to answer the following question: Can we 
construct an effective Schrodinger equation which solved in the well known basis 
containing the Pauli spinors x, 

gives approximately the same values of the probability amplitudes as the Dirac equation 
does for non-relativistic states expressed in terms of the positive-energy free-particle 
spinors 
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This kind of formulation is interesting since it would be possible to obtain some 
results of the Dirac theory (for a non-relativistic situation) from a Schrodinger-like 
equation and a state vector written in a basis commonly associated with a non- 
relativistic free particle. Moreover, it must be stressed that the usual non-relativistic 
reduction techniques such as the Pauli reduction (Messiah 1961, Bethe and Salpeter 
1957) or the Foldy-Wouthuysen (FW) transformations (Foldy and Wouthuysen 1950) 
do not lead to this formulation at all approximation orders of the effective Hamiltonian, 
as we shall see later. 

Section 2 of this paper will be devoted to a method which permits such a formula- 
tion, the integro-differential (ID) method. In § 3, we shall use it for the study of the 
electromagnetic and the pseudoscalar interactions. Finally, we shall proceed in 5 4 to 
the compariscw of the ID and FW methods for the electromagnetic case. In this paper, 
the units will be such that ti = c = 1. 

2. The integro-differential method 

The ID method is similar in some respects to the non-relativistic reduction of the 
scattering ( T )  matrix. It consists in writing the Dirac equation in its integro-differential 
form, in terms of the upper (large) spinorial components, and then evaluating its 
non-relativistic limit. The effective Schrodinger equation will be defined in such a way 
to give approximately the same results when written in its integro-differential form. 

The starting point is the Dirac equation (Bjorken and Drell 1964) 

a* 
= i- 

a t  
( y"m + yoy  * P+ 

where 
+1/2  +1/2  

,=-1 /2  ,=-1 /2  
*iw) I= c J" d3pa(1,p, ,)@.j;~, ,r ,+ c J" d3p b ~ , p , l ) ~ ~ ~ ~ , x , t ~  ( 2 )  

~ l , p , x , r )  and @[t i , x , r )  being the negative- and positive-energy free-particle spinors 
respectively. We obtain from (2) and (1) the integro-differential form of the Dirac 
equation 

@(-I  

It will be assumed here that we have a non-relativistic situation, where V and $(x, t )  
are such that if p is non-relativistic and p' is relativistic, we have 

Such an operator V has the spatial and temporal dependence suggested by Foldy 
and Wouthuysen (1950), that is having its eigenvalues very small compared with the 
mass and no time and space Fourier components comparable to or greater than m. 



Non-relativistic reduction of the Dirac equation 1119 

This allows us to put forward our first approximation 

and then 

where 
Pa 

components, knowing that 

d3p indicates that we are restricting the integration to values of non-relativistic 

The second step is to write down equation (5) in terms of the upper (large) spinorial 

Vu, and 4" being respectively 2 x 2 and 2 x 1 matrices. We then obtain 

In evaluating the non-relativistic limit of equation (6), we need the following 
expressions and expansion: 

The use of equations (7)-(9) and the expansions of [(e + m)/2e]"2 and l / ( e  + m )  
(based on equation (9)), in the non-relativistic limit of equation (6), leads to the 
following kind of result 

where U, represents the smallest term kept in the reduction. 
From (8) and (9) it is clear that we have 
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If ho is truncated consistently at the same order of approximation as the one which 
led to (lo), we have the following Schrodinger-like equation 

which gives (6) (at the order of approximation considered) if 

The integro-differential method is useful in the sense that the 4 in (12) are, to all 
approximation orders, the non-relativistic free-particle state vector defined in § 1. This 
is not the case with the FW reduction technique, as we shall see in 8 4. 

3. Examples 

Consider the electromagnetic interaction 
0 V = e c p - y  y * e A .  

For this case, equation (6) is given by (to an error of - ( ~ / m ) ~ e c p ,  assuming ecp - eA - 
t p2 /2m) ) :  

ecp e 
4m 16m 

+ (U * P) 7 ( U * P )  + 7 {P’, {U * P, U * A } }  

e 
8m 

+ y { P ’ U * P , u * A }  

After having calculated some of the anticommutators { , }, we finally obtain the 
following effective Schrodinger Hamiltonian 

P2 P4  e e e 
2m 8m 2m 2m 2m 

hEM = m + -- y+ ecp --A * P - - P . A  --U * (V X A )  

If V is the pseudoscalar interaction 

v = igyo y 5 4  

we obtain to an error of about (p/mI4g+ 
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The usefulness of hPS may be limited by the fact that the presence of y 5  in V makes 
equation (4) a good approximation of an initially non-relativistic state vector for only a 
short time. 

4. Discussion 

Let's compare h E M  obtained previously (without the ( ~ / m ) ~ e A  terms) with the Hamil- 
tonian of the FW method for the electromagnetic interaction (Bjorken and Drell 1964): 

e + ep - - u . ( V  x A )  
FW (P-eA)* 

h E M = m +  
2m 2m 

ie +- 

We note that the terms containing e2 and aA/at are missing in hEM.  This difference 
should not surprise us since, by definition, hEM and h:: have to operate on different 
non-relativistic state vectors. hEM must operate on the q5 defined in 5 1; with h;:, we 
must use ( UFW@{Tb,x,tJU, that is the upper components of the following spinor 

where n = P - eA, E = -Vp - dA/at, @izb,x , t )  is the free-particle Dirac spinor (see § 2) 
and UFw the unitary operator corresponding to the FW transformations. Clearly, the 
two-state vectors q5 and (UFw@(+))u are different except at the lowest order of 
approximation where then h E M  = h E M .  

In order to obtain the right values of the probability amplitudes a ( i , p , t )  from h;:, we 
must use the vectors ( UFw@(+))u of equation (13) which differ from one approximation 
order to another. Similar conclusions can be drawn for q5yi ,p,x,r )  (see equation ( 7 ) ) ,  the 
non-relativistic free-particle state vector associated with the Pauli reduction. Also, the 
state vectors ( UFW@(+))" depend explicitly on the interaction fields contained in the 
Dirac Hamiltonian (p and eA here). In this respect, the effective Hamiltonian derived 
from the ID method is attractive since the state vectors associated with it (the 4 )  are 
always the same, no matter what the order of approximation and the interaction are. 

Another practical advantage concerns the numerous studies of non-relativistic 
phenomena involving the q5 : the inclusion of effects of relativistic origin consistent with 
the Dirac equation is a very trivial matter, since we need only to substitute the usual 
non-relativistic Hamiltonian by the operator h of equation (11) evaluated at the 
approximation order required. 

FW 
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